1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
import queue
import sys
import threading
import time
from openai import OpenAI
from help import HelpCommands, start_chat
from style import StyleLog as styler
# Read in token from "token" file
# TODO: env variable in future?
with open("token", "r") as file:
token = file.readlines()
client = OpenAI(api_key=token[0].strip())
def text_call(api_call_queue, messages, model):
response = client.chat.completions.create(
model=model,
messages=messages
)
api_call_queue.put(response.choices[0].message.content)
def image_call(api_call_queue, messages, model):
response = client.chat.completions.create(
model=model,
messages=messages
)
api_call_queue.put(response.choices[0].message.content)
def main():
model = ""
if len(sys.argv) > 1:
model = sys.argv[1]
else:
model = "gpt-3.5-turbo"
helper = HelpCommands(model)
messages = start_chat(model)
while True:
# TODO: Format output nicer :)
user_input = input("\nInput: ")
status, messages, model = helper.command(user_input, messages, model)
if status == 1:
break
elif status == 2:
continue
global api_call_done
api_call_done = threading.Event()
api_call_queue = queue.Queue()
if model == "dall-e-2" or model == "dall-e-3":
response_thread = threading.Thread(target=image_call, args=(api_call_queue, messages, model,))
else:
response_thread = threading.Thread(target=text_call, args=(api_call_queue, messages, model,))
response_thread.start()
ellipsis_thread = threading.Thread(target=show_ellipsis)
ellipsis_thread.start()
response_thread.join()
api_call_done.set()
ellipsis_thread.join()
ai_response = api_call_queue.get()
messages.append({"role": "assistant", "content": ai_response})
print(f"\nAI: {ai_response}\n")
# TODO: Add some form of token check, as to not overflow
if __name__ == "__main__":
main()
|